Visual AgenTalk: Anatomy of a Low Threshold, High Ceiling
End User Programming Environment

Alexander Repenning & James Ambach

CU-CS-802-96

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1996 2. REPORT TYPE 00-01-1996 to 00-01-1996
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Visual AgenTalk: Anatomy of a Low Threshold, High Ceiling End User
Programming Environment

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

Visual AgenTalk: Anatomy of a Low Threshold, High Ceiling
End User Programming Environment '

Alexander Repenning and James Ambach

Department of Computer Science
Center for LifeLong Learning and Design
University of Colorado, Boulder CO 80309-0430
(303) 492-1349, ralex@cs.colorado.edu
(303) 492-15083, ambach@cs.colorado.edu

Fax: (303) 492-2844
http://www.cs.colorado.edu/~ralex/
http://www.cs.colorado.edu/~ambach/

Abstract

Typical approaches to end user programming involve
design trade-offs between ease of use and expressiveness.
End user programming environments are either easy to use
and not very expressive (low threshold/low ceiling) or more
difficult to use but more powerful (high threshold/high
ceiling). We propose the development of end user
programming environments that are both low threshold and
high ceiling by combining a collection of mechanisms that
address the issues of program comprehensibility, language
tailorability, and interactive multimodality. In this paper,
we describe the layered anatomy of a low threshold/high
ceiling environment that is usable by both end users and
language designers. We then illustrate our theory with a
description of a new, low threshold/high ceiling end user
programming environment called Visual AgenTalk.

Keywords

graphical rewrite rules, end user programming, scripting,
direct manipulation, agents, object-oriented programming,
visual programming

1. The End User Prograrﬁming Challenge

The biggest challenge in creating applications that can be
programmed by end users is to find a balance between case-
of-use and expressiveness. The perfect end user
programming environment would make it easy for an end
user to create simple programs, and at the same time
provide capabilities to allow the definition of more complex
programs. Different approaches to end user programming
tend to fall into one of two categories. Low threshold/low
- ceiling approaches allow end users to quickly acquire the
necessary skills to create simple programs, but as the user
becomes a more sophisticated programmer, these
environments become inadequate. On the other hand, high
threshold/high- ceiling programming environments initially
require a much greater knowledge of programming, but
once these skills are mastered, allow for much more

complex programs. Unfortunately many end user
programmers simply do not have the time or the interest to
acquire these advanced skills.

We have explored, within the context of the Agentsheets
programming substrate [18], a number of different
approaches to programming that were either low
threshold/low ceiling or high threshold/high ceiling. For
instance, graphical rewrite rules [1, 6, 9, 10, 16, 21] and
AgentBuilder [19], an iconic language, are both examples
of easy to use programming approaches that allow end
users to create simple animations. In contrast, AgenTalk, a
textual, object-oriented programming language based on
LISP has, in the hands of more experienced programmers,
been used to create much more complex applications within
Agentsheets.

These different approaches represent the extreme end
points of the programming spectrum. The question is
whether it is possible to combine these two approaches in
order to define an environment that is at once low threshold
and high ceiling. The answer is not to simply add more
features to a low threshold/low ceiling language because
the added functionality will eventually interfere with the
conceptual clarity of low threshold languages. On the other
hand simply defining domain-oriented subsets of high
threshold/high ceiling languages does not necessarily make
the language any easier to learn and will not result in a
language useful for end users. ‘

In order to create an end user programming environment
that is both low threshold and high ceiling, we believe that
the environment must embody mechanisms that promote
program comprehensibility, language tailorability, and
interactive multimodality.

The goal of this paper is to describe why
comprehensibility, tailorability and multimodality are
necessary to create evocative and engaging low
threshold/high ceiling environments,

January 235, 1996

The paper describes an anatomy of programming layers to
support these concerns and introduces the Visual AgenTalk
environment as special instance of this anatomy.

2. The Anatomy of Low Threshold/High
Ceiling Programming Environments

Low threshold/high ceiling implies both ease of use and
expressiveness. The idea is to make it easy for end users to
program simple things while still providing the capabilities
for more complicated programs. Although this may be too
great a challenge for a single programming language, we
feel that by creating a collection of tightly integrated
mechanisms it is possible to create a low threshold/high

ceiling environment that is comprehensible, tailorable, and -

multimodal.

* Comprehensibility: To lower the threshold of
programming, an environment must allow users to
easily comprehend how programs and program elements
will map to the behavior of application objects.

* Tailorability: Environment must be flexible enough to
allow the creation of new, domain specific,
programming elements that can be utilized by end users.

* Multimodality: Environments must provide access to all
capabilities of the underlying system hardware and
software.

2.1, Comprehensibility

The issue of program comprehensibility involves the ability
to understand how program primitives and collections of
primitives will map to the behavior of a particular
application. This problem is exacerbated by the barriers that
exist between the things to be programmed and the
programs themselves [15]. In typical end user programming
environments two worlds exist:

* Application World. The application world contains the
objects of direct interest to the end user. Examples of
application world objects include things like text,
buttons, fields and cards in HyperCard® stacks (Figure
1). Application world objects are the things that are
manipulated or viewed by the end user of the
application.

* Programming World. The programming world contains
objects that describe the behavior of application world
objects. In HyperCard, programming world objects
consist of a textual programming language and
individual scripts that describe how application world
objects will behave (Figure 1).

Application World

=

Programming World

L bn mouseUp
4 put "It is now " && the time into=
@rd field "Tine Field"3

end mouseUp

Figure 1: A HyperCard Example

A major difficulty in programming is to comprehend the
mapping between the application world and the
programming world. The issue is to determine what
programming world object or collection of objects needs to
be employed in order to achieve the desired behavior in the
application world. Figure 1 shows a sample script created in
HyperTalk and demonstrates the problem -of mapping
between the two worlds. The programming world is
represented by the window entitled “Script of card button id
1 =“Time””. This script specifies the behavior of the Time
button that appears in the AW (top of Figure 1). The script
dictates that when the Time button is clicked, a message

- should appear in the Time Field pictured below the Time

button. Although the Time Field is an object in the AW that
can be dragged, resized and edited, within the programming
world, the user refers to it by the abstract name “card field
“Time Field””. The user is forced to make the mapping
between “card field “Time Field”” in the programming
world and the Time Field in the AW. Environments that
support comprehensibility must provide links between AW
objects and programming world objects.

2.2. Tailorability

A challenge in developing programming languages for end
users is to find the right level and kind of programming
primitives. A useful repertoire of language primitives

January 25, 1996

should be closely related to the concepts that end users
typically deal with. End users should not be forced to solve
frequent problems in their domain by combining a large
number of low level, general purpose programming
constructs in intricate ways. However, language designers
cannot anticipate all the problems that might be tackled
with a particular language [13]. Furthermore, the problem
domain itself may be a moving target. This presents a
difficult design constraint that can only be resolved if the
programming language is allowed to evolve over time.

To deal with this problem, it is important that the end user
programming language be part of a layered environment
that provides facilities for language designers to easily
evolve the language. Although these lower levels may not
be appropriate for end user programmers, they can be used
by language developers to develop new language primitives
as the understanding of the problem domain evolves. This
tailorability is vital for creating end user languages that do
not become obsolete and yet are specific enough to be
useful within a particular domain.

2.3. Multimodality

The expressiveness of a programming language determines
what kind of things end users can verbalize using the
computer as a medium. An important aspect of this
verbalization is the ability to provide programmers different
communication modalities. As computational hardware and
software become more powerful, they allow for more
sophisticated means of interaction. Computer users do not
interact with their applications just by typing in commands
anymore, instead they use a combination of typing, mouse
gestures and even voice. In response, computers can
communicate with users via text, still images, sound,
speech and animation. These different communication
mechanisms are ubiquitous in modern computer
applications, and end user programming environments
should not limit the programmer to particular modalities.

The ability to define when a program should execute can be
as complex as defining what the program should do. It is
often difficult to specify the circumstances that describe
when certain activities should be executed. A classic
example of when complexity is the VCR. Most VCR
owners are capable of playing a tape and even recording a
program directly by pressing either the play or record
button. However, the intricacies of “programmed”
recording are due to establishing when the event should
occur. Thus, setting the right start time, stop time, and
channel become the real source of programming frustration.
End user programming environments need to provide
access to different communication modalities (mouse
clicks, timers, speech input, etc.) in order to let end users
specify exactly when different programs should be invoked.

These capabilities provide for more sophisticated,
expressive programs.

2.4. An Anatomy of Layers

An end user programming environment that adequately
addresses the issues of comprehensibility, tailorability and
multimodality will provide both a low threshold and a high
ceiling at the same time. An architecture supporting this
kind of environment is pictured in Figure 2. Application
world objects and programming world objects are available
from within an end user programming substrate that can be
tailored for a particular domain, and the end user
programming substrate is defined from a rich programming
substrate useful for language designers. ‘

comT ehtnsr'(,,',&
. Application Programming
&\f\\‘w World World TQ"/q\
$ Objects Objects "’6,)
5 %
it End User
oty Programming Substrate Mos,,
.&g 4 7,
o (=]
5‘ %
.
Language Designer <
Programming Substrate

Figure 2: A Low Threshold/High Ceiling Anatomy

Comprehensibility is facilitated through the easy
interchange of objects from the application world and the
programming world. This is possible if both types of
objects support user contro] via direct manipulation [20],
and the objects are allowed to interact with each other.
Through this interaction, end users experience the mapping
between the two worlds, helping them to learn about
programming primitives and to test and debug their
programs. Tailorability and multimodality are provided
through the integration of lower levels and upper levels,
and are supported by a low level programming substrate
that provides language designers with a rich set of
functionality that they can package into programming
world objects for the end user. Visual AgenTalk is an end
user programming environment that instantiates the
anatomy described above.

3. Visual AgenTalk at a Glance

Visual AgenTalk is a new programming mechanism for the
Agentsheets [18] programming substrate used to develop
simulations and design environments such as the
CityTraffic environment (Figure 4). Applications developed
in Agentsheets typically consist of a large number of
autonomous, communicating agents organized in a grid
called the agentsheet. Agents can communicate amongst

January 25, 1996

themselves via the grid, or with the user through different
modalities including animation, sound and speech. Users
can communicate with agents through the use of direct
manipulation tools, the keyboard or even voice.

3.1. Applfcation World Objects: Agents

Agentsheets and Visual AgenTalk are combined into a
layered architecture (Figure 3) that allows language
designers to create tailored programming environments for
end users. :

Application Programming
World - World
Objects Objects
Agents Commands

End User Programming Substrate

Visual AgenTalk

Language Designer Programming Substrate

Agentsheets

Figure 3: Layered Language Architecture

End-users of Agentsheets applications create simulations
and designs by selecting application world objects called
agents from a Gallery (Figure 4 (1)) and placing them into
a worksheet (Figure 4 (2)). Once a worksheet is populated,
users can start simulations by selecting a menu item.
Starting a simulation activates agent ‘behavior, and users
can continue to interact with the agents while the
simulation is running [17]. The behavior of application
world objects can be altered with programming world
objects. In Figure 4, the end user is designing a traffic
simulation. Roads, cars, tracks, trains and stoppers are all
agents, and when the user starts the simulation, the agents
will act according to their programmed behavior: cars will
move on roads, and trains will move on tracks.

(1) Gallery

End User

Figure 4: The City Traffic Simulation

Designers create application world and programming world
objects for environments such as the City Traffic simulation
(Figure 4) by collaborating with end users [18].
Agentsheets provides tools that allow language designers to
create both the look and behavior of agents. In the case of
the City Traffic simulation, designers have to design and
implement the behavior of application world objects such
as cars and trains as well as to provide a basic set of
programming world objects to allow end user
programming.

3.2. Programming World Objects: Commands

Programming world objects in Visual AgenTalk are called
commands. Commands are small interactive forms
representing programming primitives that can be
manipulated by end users. Commands can be both general
purpose as well as domain specific, and have interfaces that
consist of familiar direct manipulation widgets.

A command (Figure 5) consists of a name and an arbitrary
number of parameters. End users sct the values of the typed
parameters via type interactors such as number fields, text
fields, check boxes, textual and iconic pop up menus. type
interactors can limit user input to valid choices. For
instance, a sound type interactor is a pop up menu offering
only the names of sounds that are available in the system.

January 25, 1996

Figure 5: A Visual AgenTalk Command

Parameters, such as the key in Figure 5, can be references

to application world
objects. The ability to have

to individual windows which, in traditional programming
interfaces, are used as rigid barriers between the application
world and the programming world.

4.1. Breaking down the Barriers

Visual AgenTalk supports the direct interaction between
application world and programming world objects through
a flexible drag and drop mechanism. Along the lines of
dynamic programming languages such as Lisp and
Smalltalk, any command or command composite can be
executed at any point in time. A command is applied to an
agent by selecting the command from a palette, specifying
the command’s parameters, and dragging and dropping the
command onto the agent in the worksheet. Figure 6 shows a
simple Turing machine implemented in Agentsheets. The

application world objects
appear in the programming

lorksheet: Tape Sweeper

world as they do in the
application world
significantly helps end
users to map between the
two worlds [8].

The following sections
indicate how end users

gtg&‘\f @% ﬁglﬂ

learn about the
functionality of
programming world

objects by making them

e
|k nd

interact with application

world objects, illustrate
how end users create

programs by composing Conditions:
programming world
objects, describe how
language designers create
new programming world
objects for end users, and
explain how Visual
AgenTalk supports end
users in creating
multimodal applications.

4. Comprehensibility:
Connecting the
Worlds

Elevating programming
world objects onto the
level of a direct
manipulation drag and
drop user interface, turns
them into tactile objects
that are no longer confined

P

]Selected Uatai

Figure 6: Commands can be dragged and dropped onto agents to explore their function and to modify agents

January 25, 1996

top window is the worksheet representing the application
world containing a number of agents representing the tape
pieces and the Turing machine head. Below the worksheet
are two command palettes representing part of the
programming world. The condition command palette, on
the left, holds commands to query the state of the
application world, and the action command palette, on the
right, holds commands that can change the application
world. In the figure, the “move” action command was

selected, its direction parameter was set to ™ (right) via a.

graphical pop up menu (Figure 12), and the command was
then dragged on top of the Turing machine head. This
powerful application and execution paradigm allows the
end user to explore and test-the repertoire of commands and
parameters in the context of any agent.

Dropping the command on the Turing head results in the
command’s execution. The Turing head will move
according to the direction indicated in the command, in this
case one position to the right (Figure 7).

by flexible size containers into which commands can be
dragged and dropped. The IF part is an implicit conjunction
of all the conditions and the THEN part is an implicit action
sequence. Rule sets are interpreted from top to bottom. If
the rule interpreter finds a rule for which all the conditions
are true then it will execute all of its actions, again from top
to bottom, and return from one matching cycle.

The agent representing the Turing machine head gets
programmed with two rules (Figure 9) capturing the
functionality specified in this table:

there is a “0” below

move right

there is a “1” below change it to “0” and

move right

orksheet: Tape Sweeper

Figure 7: The Turing machine head after moving one position to right.

This tactile nature of programming world objects, enabled
by the drag and drop interaction mechanism [22], extends
the notion of object-orientation. Tactility encourages a
more exploratory style of programming in which end users
perceive the functionality of programming world objects by
“touching” them in a direct manipulation sense. As we will
see later this tactility has positive consequences for other
aspects of programming as well.

4.2. Composing Programming World Objects

The notion of programming captures a range of activities
including the exploration of programming world objects to
asses their suitability for solving specific problems, and the
process of composing programming world objects into
programs. Visual AgenTalk supports rule-based
programming treating rules as special kinds of commands.

Rules are edited through rule editors (Figure 8). Similar to
the notion of nested boxes in Boxer [5], Visual AgenTalk
makes use of containment to indicate part-whole
relationships between commands. The IF part, on the left,
and THEN wpart, on the right, of each rule are represented

6

Figure 9: Turing machine rules.

Tactility in Visual AgenTalk does not only permit the
composition of programs, in-the form of rules, but also
supports the comprehension of these programs. Problems
identified regarding rule comprehension [7] and debugging
[2, 12, 14] stand in contrast with claims of modularity of

January 25, 1996

rule-based approaches [3]. We believe that this problem is
at least partly due to the lack of the ability to test individual
rules. In Visual AgenTalk each part of the rule, the IF part,
. the THEN part, individual commands, and even entire rules
can be dragged and dropped onto agents to test the rule.
Feedback is then provided indicating whether the rule
would match and what will happen if the actions get
executed, or, if the rule does not match, feedback is
provided explaining why.

5. Tailorability: Expanding the Worlds

The layered architecture of Agentsheets and Visual
AgenTalk (Figure 3) helps language designers tailor
programming and application worlds so that they feature
objects that are directly relevant to end users. Designers
create new commands in Visual AgenTalk by specifying
their interface and by implementing their functionality in
the textual AgenTalk language. AgenTalk is an extension
of lisp and is part of the language designer programming
substrate. Designers create new agents by subclassing
existing agent classes and by defining their look. Visual
AgenTalk offers embedded fallback and command
generators as mechanisms to bridge the syntactic, semantic
and interactive gaps between layers.

5.1. Embeddled Fallback

The most primitive interaction mechanism that provides
lower-level substrate access to end users is called
embedded fallback. Embedded fallback allows
knowledgeable end users to escape into the language
designer programming substrate layer from the end user
programming substrate layer. Visual AgenTalk provides a
command that allows users to evaluate any valid Lisp
expression (with or without side effects) within a Visual
Ag‘enTall‘(” program. For instance, the command
Lelen s B owill compute the sin of the number 1.5.
Smce this command is part of Visual AgenTalk, it can be
dragged and dropped just like any other Visual AgenTalk
command in order to test it or to make it part of a rule.

5.2. Command Generators

Command Generators are used by language designers to
create new language primitives for end users. Embedded
fallback mechanisms, such as the “Lisp” command in
Visual AgenTalk, are of limited use to most end users
because they require ‘a substantial knowledge of the lower
level programming language. Command generators, in
contrast, allow language designers to create new commands
for end users who have no knowledge of the language
designer programming substrate.

Command generators take compact specifications by the
language designer and generate new programming world

objects. In doing so, command generators bridge the gap
between the language designer programming substrate and
the programming world. This is not only a process of
abstraction but at the same time a mechanism to generate
concrete user interface snippets. An example will illustrate
the generation process.

WebQuest is a game design environment implemented in
Agentsheets, used by school children . WebQuest features a
number of characters such as knights and princesses, that
are either controlled manually or can be programmed.

Figure 10: WebQuest Scene

A typical game playing activity is the acquisition of objects,
such as keys, that allow characters to overcome obstacles.
In the scene in Figure 10 keys are required to open the gate.
To express these kinds of programs, new commands must
be added to Visual AgenTalk. A “Take” action command
takes an object and adds it to a list of objects owned. An
“Own” condition command allows users to express rules
that depend on the ownership of certain objects.

The language designer specifies a new command in terms
of its parameters and language designer programming
substrate code (Figure 11). The grayed out code is only
provided to illustrate the small amount of code required to
define new commands

(defcommarzd TAKE ((Dmect:on dmect«on—tgpe

CEGOrG T Aproan ; A
cpush feffact Tiresciion dap;c{ n)@ocseas ped

teffact DErcL%um TEraze)ly

Figure 11: The Take Action Command Definition.

This declarative specification automatically generates the

waal +6d command. The Direction parameter is of type
direction-type. The command generation uses the command
declaration to create a new drag and droppable user
interface snippet by automatically instantiating and laying
out type interactors such as the graphical direction pop up
menu (Figure 12).

January 25, 1996

Figure 12.: A Pop up menu to interact with direction types.

Immediately the new command can be utilized by the end
user either by dragging it onto an agent, or by dragging it
into a rule (Figure 13).

Figure 13: If the condition in this rule is satisfied, the agent will take the
key and move left

Applying this rule, the knight takes two keys and moves in
front of the gate (Figure 14).

Figure 14: WebQuest scene with knight advancing towards princess.

The next step for the language designer is to define the
“Own” condition command to test for possessions. The
command definition (Figure 15) contains two parameters.
The first one, How-Many is of type number-type and
describes how many objects of a certain kind need to be
owned. The second parameter, What, points to an
application world object represented by a graphical pop-up
menu containing the objects that can be owned.

(defcommand OWM ((How-Hany number-type) (Uhat depiction—typed)

imbcra GOy E Kaonnt T Hhat Possses fang) GHow-Manyg) s

Figure 15: The Own Condition Command Definition.

The definition, again, i
oz]
Own command,

d to automatically generate the

The end user now composes a new rule containing an
“Own” condition (Figure 16). When the rules gets
executed, because there is a door to the left, and the knight
has two keys he says “I’m in” and moves to the left.

Figure 16: Rule to open door with at least two keys.

6. Multimodality: Words User
Communication

End user programmable applications such as simulations,
games and visual programming environments can be made
more evocative and engaging by providing users
multimodal paradigms to interact with the application
world. By this we do not necessarily mean multimodal
input and output devices, such as data gloves, that are often
used in full immersion applications. Even off-the-shelve
multimodality as it is supported by current multimedia
computers can significantly enrich the human-computer
communication. Adding speech input, sound recording,
speech output, and sound playing to mouse, keyboard input
and screen output can add new dimensions of interactivity
to end user environments. However, the integration of
multimodality poses additional challenges:

* What are the modalities offered in a programming
substrate and how can they be packaged up into a useful
and usable programming interface for end users? Visual
AgentTalk includes a number of programming world
objects to provide end users access to the multimodal
functionality provided by the Agentsheets programming
substrate.

* When are these programming world objects to be
.executed? Multimodal interaction introduces new timing
and synchronization problems. Visual AgenTalk uses
the concept of triggers to provide users control over
program execution.

The idea is to move from Single modality In Single
modality Out, SISO, to Multimodal In Multimodal Out,
MIMO, models. The use of single modalities such as the
visual representations used in graphical rewrite rules may
lead to end user programming environments that are very
powerful in the realm of this single modality but it may be
hard to incrementally add new ones. Vampire {11] adds
simple mouse clicks to rewrite rules, Science Sheets and

January 25, 1996

KidSim [21] add the ability to play sounds to rewrite rules.
Visual AgenTalk provides a flexible architecture to
introduce new modalities when they become available by
defining new triggers, conditions and actions. Currently
Visual AgenTalk supports the following interactions:

Pictures: The look, color and position of agents
can be controlled.

Sound: Sounds can be played at different
pitches and amplitudes.

Speech: The voice synthesizer can speak
arbitrary strings in a number of voices.

Sound: The sound level picked up by the
microphone can be queried
Sounds can be recorded

Keyboard: Individual keys and key chords can be

- tested for.

Mouse: Mouse clicks with modifier keys can
be tested for.

Speech: Speech produced by the voice
synthesizer can be matched.

Time: Rules can execute at time intervals

specified by user

The following sections describe in the context of examples
how end users can employ these modalities.

6.1. Creating a Clapper: Using triggers and conditions

The combination of triggers and conditions allows end
users to specify complex circumstances under which rules
execute. The Agentsheets Electric World application serves
as example.

The Agentsheets Electric World (Figure 17) contains
switches that turn electricity on or off. How should a user
interact with the simulation to turn individual switches on
and off? A plausible interaction mode for this kind of
activity would be to click the switch with the mouse. This
mode would be hard to implement in graphical rewrite rules
since they do not typically provide a good way to specify
mouse input.

9

=
/]
&
®
I
&
%

L ad
Lokl

=

Figure 17: Electric World with Switches.

Triggers allow end users to specify the execution of rules
based 09 events. Two rules with click triggers,
m, are used to toggle between the on state
and the off state (Figure 18). The check boxes included in
the click trigger are used to further qualify the trigger with
click modifiers keys (shift, control, option, and command
key). Depending on what state the switch is currently in it
either switches to the on or off position with an appropriate
sound.

li Data}[Selected Data

Figure 18: Mouse click triggered rules to operate switch.

An autonomous switch, such as a blinker relay used for a
car turn signal, can be implemented by having the switch
automatically change its state from on to off every fixed
number of seconds. This is achieved simply by using a
timer trigger type, 22 A To be able to distinguish the
appearance of the timer switch from the ordinary switch it
is marked- with a “T”.

January 25, 1996

elected Data

Figure 19: Implementation of Timer Switch with Timer Trigger.

Conditions can be used to allow different communication
modalities as well. For instance, to implement a clap on,
clap off type of switch, the sound level condition,
omierU]2OB can be used. In the rule (Figure 20), the
sound level condition is used to determine if the sound level
picked up by the computer’s microphone is lérger than 200
(on a scale of 0 - 255). Again, to distinguish the clap
activated switch it is marked with a “C”.

Figure 20: Clap on, Clap off Switch Implementation.

Finally, we can replace some of the ordinary switches from
Figure 17 with timer switches and clappers.

Figure 21: Mouse click, Clapping, and Time Controlled Circuit.

The circuit is now controlled by the user clapping his
hands, clicking the switches, as well as by time.

6.2 Talking Agents

Speech input and output can be used to program complex
interactions between application world objects. Figure 22
shows 3 characters called, from top to bottom, Hans, Bob
and Franz. The three characters live in a maze consisting of
walls and a few dollar bills. The characters can speak.
When they speak, a simple animation of expanding circles
indicates who speaks and also indicates the scope in which

other characters can hear them.

Figure 22: Talking Agents.

All three characters share the same rule set. The “Hear”
condition is used to match any fragments of sentences
spoken. If a character hears the words “right” and “money”’
and sees a dollar bill to the left, then it will speak its name.
A second rule tests for the presence of the words “left”, the
word “money” and a dollar bill to the right.

January 25, 1996

Figure 23: Rules for Listeners

When a “say” command, [S2]%ho i3 G nghtof some money? E is
dragged and dropped onto Bob he will broadcast the
question (Figure 22) to all of his immediate neighbors. The
neighbors parse the sentence according to the rule and reply
if the conditions match. In this case only Hans replies since
he is to the right of some money.

This example illustrates how modalities can be combined to
implement complex communications. Employing these
different modalities within a language greatly improves the
expressiveness of that fanguage. Visual AgenTalk provides
a flexible architecture that can not only take advantage of
new communication modalities but through it’s structure of
conditions, actions, triggers and rules, Visual AgenTalk can
provide end users with the ability to take advantage of these
modalities in ways that is both easy to use and to test.

7. Conclusion and Future Work

Although most end user programming environments are
either easy to use, but not very expressive (low
threshold/low ceiling), or more difficult to use, but more
expressive (high threshold/high ceiling), it is possible to
define environments that are both low threshold and high
ceiling. The anatomy of such an environment needs to
adequately address the issues of comprehensibility,
tailorability and multimodality. This is achieved by
combining a multi-layered software architecture with
different mechanisms that allow end users to easily
combine programming world and application world objects,
and language designers to smoothly integrate functionality
from Jower level programming substrates to higher level,
end user substrates. Visual AgenTalk is an example of an
end user programming environment that embodies this
anatomy.

Visual AgenTalk effectively reduces the barrier between
the programming world and the application world by

allowing all objects to appear and interact in both worlds.
This increases the comprehensibility of programs and
program primitives. Visual AgenTalk’s tailorability
mechanisms, including embedded fallback and command
generators, provide facilities for end users that need more
sophisticated, general purpose primitives, as well as for
language designers who need to evolve the end user
language. Furthermore, Visual AgenTalk’s repertoire of
commands, triggers and rules allows end user to create
sophisticated and engaging applications that are starting to
blur the boundaries between end user programming and-
multi media authoring environments.

Although the current instantiation of Visual AgenTalk
addresses the concerns of comprehensibility, tailorability
and multimodality, we believe that steps can be taken to
lower the threshold and raise the ceiling of the
programming environment even further. For instance,
graphical rewrite rules, such as the ones used in
Agentsheets and other systems, have proven successful at
lowering programming thresholds, and we would like to
create new Visual AgenTalk commands that allow the
inclusion of graphical rewrite rules. Furthermore, the self
disclosure of low level programming primitives [4] is an
interesting learning mechanism that we would like to
incorporate to assist end user programmers interested in
exploring the more powerful Agentsheets layer. Both of
these approaches can be implemented within the anatomy
described above.

Acknowledgments

We wish to thank Gerhard Fischer and the Center for
LifeLong Learning and Design for all of the thoughtful
discussions. We also want to thank Corrina Perrone and
David Clark for their excellent work, and Kurt Schneider,
Kumiyo Nakakoji and Tamara Sumner for their feedback.
This work has been supported by the Advanced Research
Projects Agency under Cooperative Agreement Number
CDA-940860, and the National Science Foundation under
grant number RED925-3425.

References

1. Bell, B. and C. Lewis, “ChemTrains: A Language for
Creating Behaving Pictures,” 1993 IEEE Workshop
on Visual Languages, Bergen, Norway, 1993, pp.
188-195.

2. Carver, S. M. and S. C. Risinger, “Improving
Children’s Debugging Skills,” in Empirical Studies.of
Programmers: Second Workshop, G. M. Olson, S.
Sheppard and E. Soloway, Ed., Ablex Publishing
Corporation, Norwood, New Jersey, 1987, pp. 147-
171.

January 25, 1996

10.

11.

12.

13.

14.

15.

’ Halbert,

Cooper, T. and N. Wogrion, Rule-based
Programming with OPS5, Morgan Kaufman
Publischers, Inc., San Mateo, CA, 1988.

DiGiano, C. and M. Eisenberg, “Self-disclosing
Design Tools: A Gentle Introduction to End-User
Programming,” Designing Interactive Systems, Ann
Arbor, Michigan USA, 1995, pp. 189-197.

diSessa, A. A., “An Overview of Boxer,” Journal of
Mathematical Behavior, pp. 3-15, 1991.

Furnas, G. W., “New Graphical Reasoning Models
for Understanding Graphical Interfaces,” Proceedings
CHI’91, New Orleans, LA, 1991, pp- 71-78.

Gilmore, D., K. Pheasey, J. Underwood and G.

Underwood, “Learning graphical programming: An

evaluation of KidSim,” Proceedings of the Fifth IFIP

Conference on Human-Computer Interaction,
London, 1995, pp. .

D. C., “SmallStar: Programming by
Demonstration in the Desktop Metaphor,” in Watch
What I Do: Programming by Demonstration, A.
Cypher, Ed., The MIT Press, Cambridge, MA, 1993,
pp. 103-124.

Kirsch, R., A., “Computer Interpretation of English
and Text and Picture Patterns,” IEEE Transactions on
Electronic Computers, Vol. 13, pp. 363-376, 1964.

Lieberman, H., “An Example-Based Environment for
Beginning Programmers,” in Artificial Intelligence
and Education, R, W. Lawler and M. Yazdani, Ed.,
Ablex Publishing, Norwood, NJ, 1987, pp. 135-151.

Mclntyre, D., “Design and Implementation of
Vampire,” in Visual Object-Oriented Programming,
M. Burnett, A. Goldberg and T. Lewis, Ed., Manning
Publications Co., Greenwich, 1995, pp. 129-159.

Nanja, M. and C. R. Cook, “An Analysis of the On-
Line Debugging Process,” in Empirical Studies of
Programmers: Second Workshop, G. M. Olson, S.
Sheppard and E. Soloway, Ed., Ablex Publishing
Corporation, Norwood, New Jersey, 1987, pp. 172-
184.

Nardi, B., A Small Matter of Programming, MIT
Press, Cambridge, MA, 1993.

Papert, S., Mindstorms: Children, Computers and
Powerful Ideas, Basic Books, New York, 1980.

Pennington, N., “Comprehension Strategies in
Programming,” in Empirical Studies of

12

16.

17.

18.

19.

20.

21.

22.

Proceeding of Visual Languages,

{ Programmers: Second Workshop, G. M. Olson, S

Sheppard and E. Soloway, Ed., Ablex Publishing
Corporation, Norwood, New Jersey, 1987, pp. 100-
113.

Repenning, A., “Bending the Rules: Steps toward
Semantically enriched Graphical Rewrite Rules,”
Proceeding of Visual Languages, Darmstadt,
Germany, 1995, pp. 226-233.

Repenning, A. and T. Sumner, “Programming as
Problem Solving: A Participatory Theater Approach,”
Workshop on Advanced Visual Interfaces ‘94, Bari,
Italy, 1994, pp. 182-191.

Repenning, A. and T. Sumner, “Agentsheets: A
Medium for Creating Domain-Oriented Visual
Languages,” IEEE Computer, Vol. 28, pp. 17-25,
1995.

Robinson, R., D. Cook and S. Tanimoto,
“Programming Agents with Visual Rules,”
Darmstadt,
Germany, 1995, pp. .

Shneiderman, B., “Direct Manipulation: A Step
Beyond Programming Languages,” in Human-
Computer Interaction: A multidisciplinary approach,
R. M. Baecker and W. A. S. Buxton, Ed., Morgan
Kaufmann Publishers, INC. 95 First Street, Los Altos,
CA 94022, Toronto, 1989, pp. 461-467.

Smith, D. C., A. Cypher and J. Spohrer, “KidSim:
Programming Agents Without a Programming
Language,” Communications of the ACM, Vol. 37,
pp. 54-68, 1994.

Wagner, A., P. Curran and R. OBrien, “Drag Me,
Drop Me, Treat Me Like an Object,” CHI ‘95,
Denver, CO, 1995, pp. 525-530.

January 25, 1 996

